Page 29 - PR98
P. 29

  \\\\\\\\\\\\\\\[16\\\\\\\\\\\\\\\] Bedogni R., Costa M., Gómez-Ros J.M., Monti V., Pola A., Kreisel A. et al. Neutron spectrometry of a liquid Lithium based (p,n) beam at SARAF facility using the broad-energy range directional spectro- meter CYSP. Nucl. Instrum. Meth. A. 2018; 902: 144-148. https://doi. org/10.1016/j.nima.2018.06.053. \\\\\\\\\\\\\\\[17\\\\\\\\\\\\\\\] Balmer M.J.I., Gamage K.A.A., Taylor G.C. Critical review of direc- tional neutron survey meters. Nucl. Istrum. Meth. A. 2014; 735: 7-11. https://doi.org/10.1109/ANIMMA.2013.6727979. \\\\\\\\\\\\\\\[18\\\\\\\\\\\\\\\] Zou Y.S., Zhang W.H., Li C.J., Liu Y.N., Luo H.L. Construction and test of a single sphere neutron spectrometer based on pairs of Li-6 and Li-7 glass scintillators. Radiat. Meas. 2019; 127: 106148. https://doi. org/10.1016/j.radmeas.2019.106148. \\\\\\\\\\\\\\\[19\\\\\\\\\\\\\\\] Asuncion-Astrónomo A., Hila F.C., Dingle C.A.M., Balderas C.V., de la Cruz R.M.M., Guillermo N.R.D.. Design of a multi-shell por- table neutron spectrometry system based on indium foil detec- tors. Radiat. Meas. 2020; 132: 106248. https://doi.org/10.1016/j. radmeas.2020.106248. \\\\\\\\\\\\\\\[20\\\\\\\\\\\\\\\] Bedogni R., Gómez-Ros J.M., Scherillo A., Costa M., Pietropaolo A. Thermal to GeV neutron spectrometry of the INES beam line at ISIS using the CYSP-BEAM spectrometer. EPL - Europhys. Lett. 2019; 127: 12002. https://doi.org/10.1209/0295-5075/127/12002. \\\\\\\\\\\\\\\[21\\\\\\\\\\\\\\\] Knoll G.F. Radiation Detection and Measurement. John Wiley & Sons; 2010. \\\\\\\\\\\\\\\[22\\\\\\\\\\\\\\\] Bedogni R., Bortot D., Pola A., Introini M.V., Gentile A., Esposito A. et al. A new active thermal neutron detector. Radiat. Prot. Dosim. 2014; 161: 241-244. https://doi.org/10.1093/rpd/nct319. \\\\\\\\\\\\\\\[23\\\\\\\\\\\\\\\] Pola A., Bortot D., Introini M.V., Bedogni R., Gentile A., Esposito A. et al. Compact thermal neutron sensors for moderator-based neutron spectrometers . Radiat. Prot. Dosim. 2014; 161: 229-232. https://doi. org/10.1093/rpd/nct298. \\\\\\\\\\\\\\\[24\\\\\\\\\\\\\\\] Bedogni R., Bortot D., Pola A., Introini M.V., Lorenzoli M., Gómez-Ros J.M. et al. Experimental characterization of semiconductor-based thermal neutron detectors. Nucl. Instrum. Meth. A 2015; 780: 51-54. https://doi.org/10.1016/j.nima.2015.01.058. \\\\\\\\\\\\\\\[25\\\\\\\\\\\\\\\] Treccani M., Bedogni R., Pola A., Costa M., Monti V., Sans Planell O. et al. Developing radiation resistant thermal neutron detectors for the E_Libans project: Preliminary results. Radiat. Prot. Dosim. 2018; 180: 304-308. https://doi.org/10.1093/rpd/ncx298. \\\\\\\\\\\\\\\[26\\\\\\\\\\\\\\\] Sans-Planell O., Costa M., Durisi E., Lega A., Mafucci E., Menzio L., Monti V., Visca L., Bedogni R., Treccani M., Pola A., Bortot D., Ali- kaniotis K., Giannini G., Gómez-Ros J.M. Development of gamma insensitive silicon carbide diagnostics to qualify intense thermal and epithermal neutron fields. J. Inst. 2020; 15: C06021/1-10. https://doi. org/10.1088/1748-0221/15/06/C06021. \\\\\\\\\\\\\\\[27\\\\\\\\\\\\\\\] Caresana M., Cassell C., Ferrarini M., Hohmann E., Manessi G.P., Ma- yer S., Silari M., Varoli V. A new version of the LUPIN detector: impro- vements and latest experimental verification. Rev. Sci. Instrum. 2014; 85(6): 065102/1-8. https://doi.org/10.1063/1.4879936. \\\\\\\\\\\\\\\[28\\\\\\\\\\\\\\\] Mayer S., Chevallier M.A., Fantuzzi E., Hajek M., Luszik-Bhadra M., Tanner R., Thomas D.J., Vanhavere F. Results of the EURADOS 2017 intercomparison for whole body neutron dosemeters (IC2017n). Radiat. Meas. 2020; 135: 106364/1-4. https://doi.org/10.1016/j.rad- meas.2020.106364. \\\\\\\\\\\\\\\[29\\\\\\\\\\\\\\\] International Standards Organization (ISO). Radiological protection – criteria and performance limits for the periodic evaluation of dosime- try services. Report ISO 14146; 2018. \\\\\\\\\\\\\\\[30\\\\\\\\\\\\\\\] Fernández F., Domingo C., Baixeras C., Luguera E., Zamani M., Debeauvais M. Fast neutron dosimetry with CR-39 using electro- chemical etching. Int. J. Radiat. Appl. Instrumentation. Part D. Nucl. Tracks Radiat. Meas. 1991; 19(1-4): 467–470. https://doi.or- g/10.1016/1359-0189(91)90246-E. \\\\\\\\\\\\\\\[31\\\\\\\\\\\\\\\] García M.J., Amgarou K., Domingo C., Fernández F. Neutron res- ponse study of two CR-39 personal dosemeters with air and Nylon converters. Radiat. Meas. 2005; 40(2-6): 607–611. https://doi.or- g/10.1016/j.radmeas.2005.04.017. \\\\\\\\\\\\\\\[32\\\\\\\\\\\\\\\] Domingo C., de San-Pedro M., García-Fusté M.J., Romero M.T., Amgarou K., Fernández F. Estimation of the response function of a PADC based neutron dosimeter in terms of fluence and Hp(10). Radiat. Meas. 2013; 50: 82–86. https://doi.org/10.1016/j.rad- meas.2012.02.016. \\\\\\\\\\\\\\\[34\\\\\\\\\\\\\\\] International Commision on Radiation Units and Measurements (ICRU). Conversion Coefficients for use in Radiological Protection. Against External Radiation. ICRU Report 57. J. Int. Comm. Radiat. Units Meas. 1988; os29(2). https://doi.org/10.1093/jicru/os29.2.Re- port57. \\\\\\\\\\\\\\\[35\\\\\\\\\\\\\\\] Domingo C., García-Fusté M.J., Devienne A., Romero-Expósito M., Ventura A., Caballero M.A. Espectrometría de neutrones en el Labo- ratorio de Luz Sincrotrón ALBA. 6o Congreso Conjunto SEFM-SEPR. Referencia 339; Burgos, 11-14 de junio de 2019. \\\\\\\\\\\\\\\[36\\\\\\\\\\\\\\\] García-Fusté M.J., Devienne A., Romero-Expósito M., Caballero-Pa- checo M.A., Domingo C. Calibration of neutron dosimeters for radiation protection use at the ALBA synchrotron experimental hall. Radiat. Phys. Chem. 2020; 171: 108749/1-8. https://doi.org/10.1016/j. radphyschem.2020.108749. \\\\\\\\\\\\\\\[37\\\\\\\\\\\\\\\] Stolarczyk L., Trinkl S., Romero-Exposito M., Mojżeszek N., Ambro- zova I., Domingo C., Davídková M., Farah J., Kłodowska M., Knežević Ž., Liszka M., Majer M., Miljanić S., Ploc O., Schwarz M., Harrison R.M., Olko, P. Dose distribution of secondary radiation in a water phantom for a proton pencil beam - EURADOS WG9 intercompari- son exercise. Phys. Med. Biol. 2018; 63(8): 085017/1-13. https://doi. org/10.1088/1361-6560/aab469. \\\\\\\\\\\\\\\[38\\\\\\\\\\\\\\\] Knežević Ž., Ambrozova I., Domingo C., De Saint-Hubert M., Majer M., Martínez-Rovira I. Comparison of response of passive dosimetry systems in scanning proton radiotherapy - A study using paediatric anthropomorphic phantoms. Radiat. Prot. Dosimetry. 2018; 180(1-4): 256-260. https://doi.org/10.1093/rpd/ncx254. \\\\\\\\\\\\\\\[39\\\\\\\\\\\\\\\] Romero-Expósito M., Domingo C., Sánchez-Doblado F., Ortega-Ge- labert O., Gallego S. Experimental evaluation of neutron dose in radiotherapy patients: Which dose? Med. Phys. 2016; 43(1): 360-367. https://doi.org/10.1118/1.4938578. \\\\\\\\\\\\\\\[40\\\\\\\\\\\\\\\] Domingo C., Romero-Expósito M., Martínez-Rovira I., Caballero M.A. Metodología para la determinación de la dosis periférica debida a los neutrones en protonterapia mediante detectores de trazas (PADC). 6o Congreso Conjunto SEFM-SEPR; Burgos, 11-14 de junio de 2019. \\\\\\\\\\\\\\\[41\\\\\\\\\\\\\\\] Mares V., Romero-Expósito M., Farah J., Trinkl S., Domingo C., Do- mmert M., Stolarczyk L., Van Ryckeghem L., Wielunski M., Olko P., Harrison R.M., A comprehensive spectrometry study of a stray neu- tron radiation field in scanning proton therapy. Phys. Med. Biol. 2016; 61(11): 4127-4140. https://doi.org/10.1088/0031-9155/61/11/4127. \\\\\\\\\\\\\\\[42\\\\\\\\\\\\\\\] Thomas D.J., Nolte R., Gressier V. What is neutron metrology and why is it needed? Metrologia 2011; 48(6): S225-S238. https://doi. org/10.1088/0026-1394/48/6/S01. \\\\\\\\\\\\\\\[43\\\\\\\\\\\\\\\] Méndez R., Guerrero J.E., Embid M., Fernández R., Grandio R., Pé- rez P., Márquez J.L., Álvarez F., Ortego P. Design and verification of the shielding around the new neutron standards laboratory (LPN) at CIEMAT. Radiat. Prot. Dosim. 2014; 161(1-4): 393-397. https://doi. org/10.1093/rpd/nct348. \\\\\\\\\\\\\\\[44\\\\\\\\\\\\\\\] Vaquero-Ortiz E.M., Cascante-Díaz E., González-Pineda L.M. Informe sobre instalaciones del Ciemat. Informe Técnico CIEMAT 1372; 2015. \\\\\\\\\\\\\\\[45\\\\\\\\\\\\\\\] International Standards Organization (ISO). Reference neutron radia- tions — Part 1: Characteristics and methods of production. Report ISO 8529-1:2001; 2001. \\\\\\\\\\\\\\\[46\\\\\\\\\\\\\\\] International Standards Organization (ISO). Reference neutron radia- tions — Part 2: Calibration fundamentals of radiation protection de- vices related to the basic quantities characterizing the radiation field. Report ISO 8529-2:2000; 2016. \\\\\\\\\\\\\\\[47\\\\\\\\\\\\\\\] Lacoste V., Gressier V., Muller H., Lebreton L. Characterisation of the IRSN graphite-moderated Americium-Beryllium neutron field. Radiat. Prot. Dosim. 2004; 110(1-4): 135-139. https://doi.org/10.1093/rpd/ nch188. \\\\\\\\\\\\\\\[48\\\\\\\\\\\\\\\] Luszik-Bhadra M., Reginatto M., Wershofen H., Wiegel B., Zimbal A. New PTB thermal neutron calibration facility: first results. Radiat. Prot. Dosim. 2014; 161(1-4): 352-356. https://doi.org/10.1093/rpd/ nct354. \\\\\\\\\\\\\\\[49\\\\\\\\\\\\\\\] Bedogni R., Pietropaolo A., Gómez-Ros J.M. The thermal neutron facility HOTNES: theoretical design. Appl. Radiat. Isotopes 2017; 127: 68-72. https://doi.org/10.1016/j.apradiso.2017.05.003. \\\\\\\\\\\\\\\[50\\\\\\\\\\\\\\\] Cevallos-Robalino L.E., García-Fernández G.F., Lorente A., Gallego E., Ibañez-Fernández S., Vega-Carrillo H.R., Guzmán K.A. Monte Carlo design and experimental characterization of a moderator device to produce a thermal neutron source from a 241Am/9Be source. Radiat. Phys. Chem. 2020; 168: 108599. https://doi.org/10.1016/j.radphys- chem.2019.108599.                                               


































































































   27   28   29   30   31